147 research outputs found

    Vibrational surface EELS probes confined Fuchs-Kliewer modes

    Full text link
    Recently, two reports have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron energy loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments can be understood by introducing the concept of confined bright and dark Fuchs-Kliewer modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities

    Probing Quantum Optical Excitations with Fast Electrons

    Full text link
    Probing optical excitations with nanometer resolution is important for understanding their dynamics and interactions down to the atomic scale. Electron microscopes currently offer the unparalleled ability of rendering spatially-resolved electron spectra with combined meV and sub-nm resolution, while the use of ultrafast optical pulses enables fs temporal resolution and exposure of the electrons to ultraintense confined optical fields. Here, we theoretically investigate fundamental aspects of the interaction of fast electrons with localized optical modes that are made possible by these advances. We use a quantum-optics description of the optical field to predict that the resulting electron spectra strongly depend on the statistics of the sample excitations (bosonic or fermionic) and their population (Fock, coherent, or thermal), whose autocorrelation functions are directly retrieved from the ratios of electron gain intensities. We further explore feasible experimental scenarios to probe the quantum characteristics of the sampled excitations and their populations.Comment: 13 pages, 6 figures, 56 reference

    Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source

    Full text link
    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses.Comment: 23 pages, 9 figure

    Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams

    Get PDF
    In the last decades, the blossoming of experimental breakthroughs in the domain of electron energy loss spectroscopy (EELS) has triggered a variety of theoretical developments. Those have to deal with completely different situations, from atomically resolved phonon mapping to electron circular dichroism passing by surface plasmon mapping. All of them rely on very different physical approximations and have not yet been reconciled, despite early attempts to do so. As an effort in that direction, we report on the development of a scalar relativistic quantum electrodynamic (QED) approach of the inelastic scattering of fast electrons. This theory can be adapted to describe all modern EELS experiments, and under the relevant approximations, can be reduced to any of the last EELS theories. In that aim, we present in this paper the state of the art and the basics of scalar relativistic QED relevant to the electron inelastic scattering. We then give a clear relation between the two once antagonist descriptions of the EELS, the retarded green Dyadic, usually applied to describe photonic excitations and the quasi-static mixed dynamic form factor (MDFF), more adapted to describe core electronic excitations of material. We then use this theory to establish two important EELS-related equations. The first one relates the spatially resolved EELS to the imaginary part of the photon propagator and the incoming and outgoing electron beam wavefunction, synthesizing the most common theories developed for analyzing spatially resolved EELS experiments. The second one shows that the evolution of the electron beam density matrix is proportional to the mutual coherence tensor, proving that quite universally, the electromagnetic correlations in the target are imprinted in the coherence properties of the probing electron beam.Comment: Re-Submission to SciPost. Updated version: minor revisions, SciPost templat

    Modes propres plasmon de surface révélés par spectroscopies d'électrons rapides (de systèmes modèles simples vers des systèmes complexes)

    Get PDF
    Les plasmons de surface (SP) sont des excitations mêlant électrons et photons localisées aux surfaceset interfaces métalliques. On peut les voir classiquement comme les modes électromagnétiquespropres d un ensemble constitué d un métal et d un diélectrique. Cette thèse se base sur la capacitéofferte par les techniques de spectroscopie utilisant des électrons rapides disponibles dans un microscopeélectronique à balayage en transmission (STEM), de cartographier, dans une large gammespectrale et avec une résolution spatiale nanométrique, les modes propres SP. Une telle capacitéa été démontrée séparément, durant ces dernières années, par des expériences de spectroscopie depertes d énergie d électrons (EELS), qui mesurent l énergie perdue par des électrons rapides intéragissantavec un échantillon, et de cathodoluminescence (CL), qui mesurent l énergie réémisepar l échantillon par l intermédiaire de photons, toutes deux résolues spatialement. Dans le cas del EELS, ces résultats expérimentaux sont aujourd hui interprétables à l aide d analyses théoriquesconvaincantes tendant à prouver que la quantité mesurée dans une telle expérience peut être interprétéede façon sûre en terme de modes propres de surface de l échantillon. Afin d élargir une telleinterprétation aux techniques de spectroscopies utilisant des électrons rapides en général, j ai effectuédes expériences combinées d EELS et de CL résolues spatialement sur une nanoparticle uniquesimple (un nanoprisme d or). J ai montré que les résultats offerts par ces deux techniques présententde fortes similitudes mais également de légères différences, ce qui est confirmé par des simulationsnumériques. J ai étendu l analyse théorique du signal EELS au signal CL, et ai montré que la CLcartographie, tout comme l EELS, les modes de surface radiatifs du sytème, mais avec des propriétésspectrales légèrement différentes. Ce travail constitue une preuve de principe clarifiant les quantitésmesurées en EELS et CL sur des systèmes métal-dielectriques. Ces dernières sont démontrées êtrerespectivement des équivalents nanométriques des spectroscopies d extinction et de diffusion de lalumière. Basé sur cette interprétation, j ai utilisé l EELS pour dévoiler les modes propres SP demilieux métalliques aléatoires (dans notre cas, des films semicontinus métalliques avant le seuil depercolation). Ces modes propres constituent une problématique de longue date dans le domainede la nanooptique. J ai directement identifié ces modes par des mesures et le traitement de leursrésultats. J ai complètement caractérisé ces modes propres via les variations spatiales de l intensitéliée à leur champ électrique, une énergie propre et un taux de relaxation. Ce faisant, j ai montré quela géométrie fractale du milieu, dont la prédominance croit au fur et à mesure que l on s approchede la percolation, est responsable de l existence de modes propres de type aléatoire à basse énergie.Surface Plasmons (SP) are elementary excitations mixing electrons and photons at metal surfaces,which can be seen in a classical electrodynamics framework as electromagnetic surface eigenmodesof a metal-dielectric system. The present work bases on the ability of mapping SP eigenmodes withnanometric spatial resolution over a broad spectral range using spatially resolved fast electron basedspectroscopies in a Scanning Transmission Electron Microscope (STEM). Such an ability has beenseparately demonstrated during the last few years by many spatially resolved experiments of ElectronEnergy Loss Spectroscopy (EELS), which measures the energy lost by fast electrons interactingwith the sample, and CathodoLuminescence (CL), which measures the energy released by subsequentlyemitted photons. In the case of EELS, the experimental results are today well accountedfor by strong theory elements which tend to show that the quantity measured in an experiment canbe safely interpreted in terms of the surface eigenmodes of the sample. In order to broaden thisinterpretation to fast electron based spectroscopies in general, I have performed combined spatiallyresolved EELS and CL experiments on a simple single nanoparticle (a gold nanoprism). I have shownthat EELS and CL results bear strong similarities but also slight differences, which is confirmed bynumerical simulations. I have extended the theoretical analysis of EELS to CL to show that CLmaps equally well than EELS the radiative surface eigenmodes, yet with slightly different spectralfeatures. This work is a proof of principle clarifiying the quantities measured in EELS and CL,which are shown to be respectively some nanometric equivalent of extinction and scattering spectroscopieswhen applied to metal-dielectric systems. Based on this interpretation, I have applied EELSto reveal the SP eigenmodes of random metallic media (in our case, semicontinuous metal films beforethe percolation threshold). These SP eigenmodes constitute a long standing issue in nanooptics.I have directly identified the eigenmodes from measurements and data processing. I havefully characterized these eigenmodes experimentally through an electric field intensity pattern, aneigenenergy and a relaxation rate. Doing so, I have shown that the fractal geometry of the medium,which grows towards the percolation, induces random-like eigenmodes in the system at low energies.Keywords: Surface plasmons, fast electron based spectroscopies, scanning transmission electronmicroscopy, disordered mediaPARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Plasmonic Oligomers with Tunable Conductive Nanojunctions

    Get PDF
    International audienceEngineering plasmonic hot-spots is essential for applications of plasmonic nanoparticles. A particularly appealing route is to weld plasmonic nanoparticles together to form more complex structures sustaining plasmons with symmetries targeted to given applications. However, thecontrol of the welding and subsequent hotspot characteristic is still challenging. Herein, we demonstrate an original method that connects gold particles to their neighbors by another metal of choice. We first assemble gold bipyramids in a tip-to-tip configuration, yielding short chainsof variable length and grow metallic junctions in a second step. We follow the chain formation and the deposition of the second metal (i.e. silver or palladium) via UV/Vis spectroscopy and we map the plasmonic properties using electron energy loss spectroscopy. The formation ofsilver bridges leads to a huge redshift of the longitudinal plasmon modes into the mid-infrared region, while the addition of palladium results in a redshift accompanied by significant plasmon damping

    Excitons and stacking order in h-BN

    Full text link
    The strong excitonic emission at 5.75 eV of hexagonal boron nitride (h-BN) makes this material one of the most promising candidate for light emitting devices in the far ultraviolet (UV). However, single excitons occur only in perfect monocrystals that are extremely hard to synthesize, while regular h-BN samples present a complex emission spectrum with several additional peaks. The microscopic origin of these additional emissions has not yet been understood. In this work we address this problem using an experimental and theoretical approach that combines nanometric resolved cathodoluminescence, high resolution transmission electron microscopy and state of the art theoretical spectroscopy methods. We demonstrate that emission spectra are strongly inhomogeneus within individual flakes and that additional excitons occur at structural deformations, such as faceted plane folds, that lead to local changes of the h-BN stacking order

    Visualizing plasmon-exciton polaritons at the nanoscale using electron microscopy

    Full text link
    Polaritons are compositional light-matter quasiparticles that have recently enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Despite the enormous progress, however, a direct nanometer-scale visualization of polaritons has remained an open challenge. Here, we demonstrate that plasmon-exciton polaritons, or plexcitons, generated by a hybrid system composed of an individual silver nanoparticle and a few-layer transition metal dichalcogenide can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Our experiments reveal important insights about the coupling process, which have not been reported so far. These include nanoscale variation of Rabi splitting and plasmon-exciton detuning, as well as absorption-dominated extinction signals, which in turn provide the ultimate evidence for the plasmon-exciton hybridization in the strong coupling regime. These findings pioneer new possibilities for in-depth studies of polariton-related phenomena with nanometer spatial resolution
    • …
    corecore